107 research outputs found

    Classification of acoustic events using SVM-based clustering schemes

    Get PDF
    Acoustic events produced in controlled environments may carry information useful for perceptually aware interfaces. In this paper we focus on the problem of classifying 16 types of meeting-room acoustic events. First of all, we have defined the events and gathered a sound database. Then, several classifiers based on support vector machines (SVM) are developed using confusion matrix based clustering schemes to deal with the multi-class problem. Also, several sets of acoustic features are defined and used in the classification tests. In the experiments, the developed SVM-based classifiers are compared with an already reported binary tree scheme and with their correlative. Gaussian mixture model (GMM) classifiers. The best results are obtained with a tree SVM-based classifier that may use a different feature set at each node. With it, a 31.5% relative average error reduction is obtained with respect to the best result from a conventional binary tree scheme.Peer Reviewe

    Fuzzy integral based information fusion for classification of highly confusable non-speech sounds

    Get PDF
    Acoustic event classification may help to describe acoustic scenes and contribute to improve the robustness of speech technologies. In this work, fusion of different information sources with the fuzzy integral (FI), and the associated fuzzy measure (FM), are applied to the problem of classifying a small set of highly confusable human non-speech sounds. As FI is a meaningful formalism for combining classifier outputs that can capture interactions among the various sources of information, it shows in our experiments a significantly better performance than that of any single classifier entering the FI fusion module. Actually, that FI decision-level fusion approach shows comparable results to the high-performing SVM feature-level fusion and thus it seems to be a good choice when feature-level fusion is not an option. We have also observed that the importance and the degree of interaction among the various feature types given by the FM can be used for feature selection, and gives a valuable insight into the problem.Peer Reviewe

    Acoustic event detection: SVM-based system and evaluation setup in CLEAR’07

    Get PDF
    In this paper, the Acoustic Event Detection (AED) system developed at the UPC is described, and its results in the CLEAR evaluations carried out in March 2007 are reported. The system uses a set of features composed of frequency-filtered band energies and perceptual features, and it is based on SVM classifiers and multi-microphone decision fusion. Also, the current evaluation setup and, in particular, the two new metrics used in this evaluation are presented.Peer ReviewedPostprint (author’s final draft

    NMF-Based Spectral Analysis for Acoustic Event Classification Tasks

    Get PDF
    Proceedings of: 6th International Conference The Non-Linear Speech Processing (NOLISP 2013). Mons, Belgium, June 19-21, 2013.In this paper, we propose a new front-end for Acoustic Event Classification tasks (AEC). First, we study the spectral contents of different acoustic events by applying Non-Negative Matrix Factorization (NMF) on their spectral magnitude and compare them with the structure of speech spectra. Second, from the findings of this study, we propose a new parameterization for AEC, which is an extension of the conventional Mel Frequency Cepstrum Coefficients (MFCC) and is based on the high pass filtering of acoustic event spectra. Also, the influence of different frequency scales on the classification rate of the whole system is studied. The evaluation of the proposed features for AEC shows that relative error reductions about 12% at segment level and about 11% at target event level with respect to the conventional MFCC are achieved.This work has been partially supported by the Spanish Government grants TSI-020110-2009-103, IPT-120000-2010-24 and TEC2011-26807. Financial support from the Fundaci´on Carolina and Universidad Católica San Pablo, Arequipa.Publicad

    Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers

    Get PDF
    The emerging concept of psychobiotics—live microorganisms with a potential mental health benefit—represents a novel approach for the management of stress-related conditions. The majority of studies have focused on animal models. Recent preclinical studies have identified the B. longum 1714 strain as a putative psychobiotic with an impact on stress-related behaviors, physiology and cognitive performance. Whether such preclinical effects could be translated to healthy human volunteers remains unknown. We tested whether psychobiotic consumption could affect the stress response, cognition and brain activity patterns. In a within-participants design, healthy volunteers (N=22) completed cognitive assessments, resting electroencephalography and were exposed to a socially evaluated cold pressor test at baseline, post-placebo and post-psychobiotic. Increases in cortisol output and subjective anxiety in response to the socially evaluated cold pressor test were attenuated. Furthermore, daily reported stress was reduced by psychobiotic consumption. We also observed subtle improvements in hippocampus-dependent visuospatial memory performance, as well as enhanced frontal midline electroencephalographic mobility following psychobiotic consumption. These subtle but clear benefits are in line with the predicted impact from preclinical screening platforms. Our results indicate that consumption of B. longum 1714 is associated with reduced stress and improved memory. Further studies are warranted to evaluate the benefits of this putative psychobiotic in relevant stress-related conditions and to unravel the mechanisms underlying such effects

    JAK-STAT signaling in inflammatory breast cancer enables chemotherapy-resistant cell states

    Get PDF
    Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell-type in IBC and are commonly pSTAT3+. Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant cells revealed enrichment of genes associated with lineage identity and inflammation in chemotherapy resistant derivatives. Integrated pSTAT3 ChIP-seq and RNA-seq analyses showed pSTAT3 regulates genes related to inflammation and epithelial to mesenchymal transition (EMT) in resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift from luminal to basal/mesenchymal cell states through selection for rare pre-existing subpopulations or an acquired change. Lastly, combination treatment with paclitaxel and JAK2/STAT3 inhibition prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a more effective therapeutic strategy in IBC

    Evolutionary history of human colitis-associated colorectal cancer

    Get PDF
    Objective: IBD confers an increased lifetime risk of developing colorectal cancer (CRC), and colitis-associated CRC (CA-CRC) is molecularly distinct from sporadic CRC (S-CRC). Here we have dissected the evolutionary history of CA-CRC using multiregion sequencing. Design: Exome sequencing was performed on fresh-frozen multiple regions of carcinoma, adjacent non-cancerous mucosa and blood from 12 patients with CA-CRC (n=55 exomes), and key variants were validated with orthogonal methods. Genome-wide copy number profiling was performed using single nucleotide polymorphism arrays and low-pass whole genome sequencing on archival non-dysplastic mucosa (n=9), low-grade dysplasia (LGD; n=30), high-grade dysplasia (HGD; n=13), mixed LGD/HGD (n=7) and CA-CRC (n=19). Phylogenetic trees were reconstructed, and evolutionary analysis used to reveal the temporal sequence of events leading to CA-CRC. Results: 10/12 tumours were microsatellite stable with a median mutation burden of 3.0 single nucleotide alterations (SNA) per Mb, ~20% higher than S-CRC (2.5 SNAs/Mb), and consistent with elevated ageing-associated mutational processes. Non-dysplastic mucosa had considerable mutation burden (median 47 SNAs), including mutations shared with the neighbouring CA-CRC, indicating a precancer mutational field. CA-CRCs were often near triploid (40%) or near tetraploid (20%) and phylogenetic analysis revealed that copy number alterations (CNAs) began to accrue in non-dysplastic bowel, but the LGD/HGD transition often involved a punctuated ‘catastrophic’ CNA increase. Conclusions: Evolutionary genomic analysis revealed precancer clones bearing extensive SNAs and CNAs, with progression to cancer involving a dramatic accrual of CNAs at HGD. Detection of the cancerised field is an encouraging prospect for surveillance, but punctuated evolution may limit the window for early detection

    Influence of GaAs Substrate Orientation on InAs Quantum Dots: Surface Morphology, Critical Thickness, and Optical Properties

    Get PDF
    InAs/GaAs heterostructures have been simultaneously grown by molecular beam epitaxy on GaAs (100), GaAs (100) with a 2° misorientation angle towards [01−1], and GaAs (n11)B (n = 9, 7, 5) substrates. While the substrate misorientation angle increased from 0° to 15.8°, a clear evolution from quantum dots to quantum well was evident by the surface morphology, the photoluminescence, and the time-resolved photoluminescence, respectively. This evolution revealed an increased critical thickness and a delayed formation of InAs quantum dots as the surface orientation departed from GaAs (100), which was explained by the thermal-equilibrium model due to the less efficient of strain relaxation on misoriented substrate surfaces
    corecore